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Abstract. In this paper a global stochastic optimization algorithm, which is almost surely (a.s.)
convergent, is applied to the model reduction problem. The proposed method is compared with the
balanced truncation and Hankel norm approximation methods by examples in step responses and in
approximation errors as well. Simulation shows that the proposed algorithm provides better results.
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1. Introduction

When designing control in order a system to possess some properties, a common
approach is to work on its model. A real system may be described by a high order
differential equation, which, however, may not be suitable for designers, because it
is difficult, if not impossible, to design the optimal control for a high order system
and to realize a sophisticated control law. Therefore, it is important to approximate
a high order system by a lower order system without violating its stability. This is
the topic of model reduction. The lower order approximate system, which control
designers want to work with, is parameterized, and the parameters in the approx-
imate system are selected to minimize the difference between the real system and
the model, where the difference may be of their transfer functions, and expressed
in H2 or H∞ norms. However, for a given set of parameters this difference may
not exactly be observed because of the system uncertainties and random effects. In
addition, in order to reduce the number of observations when minimizing the error
norm, sometimes random directions [1] are used to form the finite differences of
the minimized function. Therefore, this is a stochastic optimization problem.

This problem concerns with seeking for the extreme of a function L(·), defined
on a multidimensional parameter space, on the basis of observations made on L(·)
and possibly corrupted by noise. For solving the stochastic optimization problem
one may apply stochastic approximation (SA) algorithms [2–5] which, however,
may be stuck on a local extreme of L(·). As a rule, L(·) is nonconvex and the
extremes of L(·) are not unique. This means that SA algorithms may generate a
model which is not good enough. The simulated annealing method [6–8] may be
applied for searching the global extreme of L(·), but it provides the convergence
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of estimates to the global extreme only in probability and the convergence rate is
rather slow. So, for modelling dealt with here it is of great importance to have
an effective stochastic optimization algorithm that a.s. converges to the global
minimizer of L(·).

In Section 2, the global stochastic optimization algorithm is described. In Sec-
tion 3, the algorithm described in Section 2 is applied to model reduction. In
Section 4, the balanced truncation and Hankel norm approximation, being the
well-known methods for model reduction, are introduced with the purpose of com-
parison. In Section 5 the simulation results are presented comparing step responses
and approximation errors.

2. Global stochastic optimization algorithms

We now describe an algorithm searching the global extreme of an unknown func-
tion L(·) which can be observed possibly with noise.

To be fixed, assume that the problem is to seek for the minimizer of L(·): R
l →

R. Let (�j

k, j = 1, . . . , l, k ∈ N) be a sequence of i.i.d. random variables such
that

|�j

k | < a, | 1

�
j

k

| < b, E(
1

�
j

k

) = 0

∀i ∈ {1, . . . , l},∀k ∈ N where a > 0, b > 0. For example, one may take the
Bernoulli’s sequence of random variables, i.e., P(�j

k = 1) = P(�
j

k = −1) = 1
2 .

Denote by xk the estimate for the global minimizer x0 at time k.
At time k + 1 two observations are made:

y+
k+1 = L(xk + ck�k)+ ξ+

k+1 (1)

y0
k+1 = L(xk)+ ξ 0

k+1, (2)

where

�k = [�1
k, . . . ,�

l
k]τ , ck > 0, ck →

k→∞ 0 (3)

and ξ+
k+1 and ξ 0

k+1 denote the noises. The following Kiefer-Wolfowitz (KW) al-
gorithm with expanding truncations is used for local search [10,11]:

xk+1 = (xk + akyk+1)I{‖xk+akyk+1‖≤Mσk
} + x∗I{‖xk+akyk+1‖>Mσk

}, (4)

σk =
k−1∑
j=0

I{‖xj+aj yj+1‖>Mσj
}, σ0 = 0, (5)
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where x∗ ∈ R
l is fixed, Mk > 0, Mk ↑ ∞, ak > 0, ak → 0, and

∞∑
k=0

ak = ∞. In

(4), (5), yk+1 serving as the estimate for the gradient of −L(·) is defined by

yk+1 = y0
k+1 − y+

k+1

ck
�−1

k

= L(xk)− L(xk + ck�k)

ck
�−1

k + ξk+1

ck
�−1

k , (6)

where

�−1
k

�= [ 1

�1
k

· · · 1

�l
k

]τ , (7)

ξk+1 = ξ 0
k+1 − ξ+

k+1. (8)

If the gradient h(·) of L(·) can be observed (possibly with noise), then in lieu
of (1),(2) we may directly apply the observations

yk+1 = h(xk)+ εk+1 (9)

in (4) and (5), needless to introduce {�k} and to form the difference (6).
Since the KW algorithm may be stuck on a local minimizer, we combine it with

the random search (RS) [12] as follows.
Let the ith selection of RS for the global minimizer serve as the initial value

of the ith run of the KW algorithm. In the ith run, the estimate and the noise
are supplied with a superscript i and denoted by xik and ξ ik+1, respectively, but
for simplicity of notations, �1

k , . . . , �
l
k will not be equipped with any additional

superscript with following understanding that each �i
k can only be used once.

Let RS be carried out according to a continuous probability density p(·). Let
f (i) and e(i) be integer-valued increasing functions such that f > e and f (i +
1) − f (i) →

i→∞ ∞. Define G(i) = f (i) − e(i). For example, we may take f (i) =
(a + i)α , a > 0, α ≥ 2 and e(i) = (a + i)β , α > β.
Step 1. Local search from a randomly selected initial value.

Let x(i)0 be the outcome of the ith selection of RS according to the density p(·).
Calculate {x(i)k }, 0 ≤ k ≤ G(i) − 1 by (4)-(9) with initial value x(i)0 , where

ak
�= a

(i)
k = a/(e(i) + k), a > 0,

ck = c/(e(i) + k)µ, c > 0,

µ ∈ ( 1
4 ,

1
2), x

∗ = x
(i)

0 and Mk = ‖x(i)0 ‖ ∨ Li ∨ Nk, where {Li} and {Ni} are
sequences of positive real numbers increasingly diverging to ∞ as i → ∞. As an
example, one may take Li = i, or 2i , and Ni = i, or 2i .

At the end of this step, x(i)G(i) is obtained.

Step 2. Estimating L(x(i)G(i)).
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Corresponding to (2), the observation at x(i)k is denoted by

y
(i,0)
k+1 = L(x

(i)
k )+ ξ

(i,0)
k+1 , (10)

and the estimate %(i)

G(i) for L(x(i)G(i)) is obtained by recursion

%
(i)
k+1 = %

(i)
k + 1

k + 1
(y

(i,0)
k+2 −%

(i)
k ),

%
(i)
0 = 0, 0 ≤ k ≤ G(i) − 1. (11)

Step 3. Comparison with previous results.
Let %f(i) be the previous estimate for the minimum of L(·). Take a sequence

{λ(i)} of real numbers such that λ(i) > 0 and λ(i) →
i→∞

0 to serve as thresholds:

Set xf (i) = x
(i)

G(i), if %(i)

G(i) + λ(i) < %f (i) − λ(i). Otherwise, keep xf (i) unchanged,
where xf (i) is the estimate for the global minimizer.
Step 4. Improving xf (i) by local search.

Improve xf (i) to xf (i+1) by use of (4) and (5) with ak = a/k, ck = c/nµ,
µ ∈ ( 1

4 ,
1
2 ) and k ≥ f (i). Simultaneously, update the estimate %k for L(xk) by

%k+1 = %k + 1

n+ 1 − f (i)
(y0

k+2 −%k), (12)

%f(i) = 0, k ≥ f (i). (13)

By the end of this step xf (i+1) and %f(i+1) are derived. Then back to Step 1 for
the (i + 1)th selection of RS.

Steps 1–4 describe an optimization algorithm searching for global minimizer
of L(·). This algorithm a.s. converges to the global minimizer of L(·) under quite
general conditions. For example, the following conditions are sufficient.

(A1) L(·) : Rl → R is such that ∇L is locally Lipschitz continuous, and there are
constants k0 and k1 such that

k0
�= lim inf‖x‖→∞ L(x) > Lmin(

�= min
x∈Rl

L(x))

‖x∗‖ < k, and L(x∗) < inf‖x‖=k1
L(x),

and {L(x) : ∇L(x) = 0, x ∈ R
l} is nowhere dense.

(A2) {ηk,F η

k } and {ζk,F ζ

k } are martingale difference sequences independent of
{�k} such that

sup
k

{E(η2
k+1|F η

k ) + Eη2
k+1} < ∞,

sup
k

E{(ζ 2
k+1|F ζ

k )+ Eζ 2
k+1} < ∞,
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where {ηk} and {ζk} denote the sequences obtained respectively from {ξk} and
{ξ (i,0)k } ordered by their time of appearance in the algorithm.

(A3) lim infi→∞ e(i)i−(1+δ) > 0 for some δ > 0 and f (i)/e(i) → ∞ as i → ∞.

For the proof of a.s. convergence of the algorithm we refer to [11], where the
noise conditions are weaker than (A2).

3. Application to model reduction

A real system may be modelled by a high order system which, however, may be
too complicated for control design. In control engineering the order reduction for a
model is of great importance. In the linear system case, this means that a high order
transfer function F(z) is to be approximated by a lower order transfer function.
For this one may use methods like the balanced truncation (see, e.g., [13]) and
the Hankel norm approximation (see, e.g., [13,14]). Both these methods are based
on concept of the balanced realization. We are interested in recursively estimating
the optimal coefficients of the reduced model by using the stochastic optimization
algorithm presented in Section 2.

Let the high order transfer function F(z) be

F(z) = α1z
n−1 + α2z

n−1 + · · · + αn−1z + αn

zn + β1z
n−1 + · · · + βn−1z+ βn

(14)

and let it be approximated by a lower order transfer function Fm(z) = C(z)/D(z).
If C(z) is of order 2s − 1 (or 2s), then D(z) is taken to be of order 2s (or 2s + 1).
To be fixed, let us take C(z) to be a polynomial of order 2s − 1 and D(z) of order
2s :

C(z) = c1z
2s−1 + c2z

2s−2 + · · · + c2s−1z + c2s, (15)

D(z) = (z2 + d11z + d21)(z
2 + d12z+ d22) · · · (z2 + d1sz + d2s), (16)

where coefficients ci , i = 1, · · · , 2s should not be confused with stepsizes used in
Steps 1–4. Write Fm(z) as Fm(c, d, z), where c and d stand for coefficients of C(z)
and D(z)

c = [c1, c2, · · · , c2s−1, c2s]τ and d = [d11, d21, · · · , d1s, d2s]τ .
It is natural to take

L(c, d)
�= ‖F(z)− Fm(c, d, z)‖2

2

= 1

2π

∫ 2π

0
|F(ejω)− Fm(c, d, e

jω)|2dω (17)
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as the performance index of approximation. The parameters c and d are to be
selected to minimize L(c, d) under the constraint that Fm(c, d, z) is stable. For
simplicity of notations we denote

x =
[
c

d

]
,

and write Fm(c, d, z) as Fm(x, z).
Let us describe the x-set where Fm(x, z) has the required property.
Stability requires that

|D(z)| �= 0, ∀z : |z| ≥ 1.

This implies that

|d1i | < 2, i = 1, . . . , s, (18)

because d1i is the sum of two complex-conjugate roots of D(z).

If d1i > 0, then
−d1i−

√
d2

1i−4d2i

2 > −1, which yields d1i − 1 < d2i . If d1i < 0,
then −d1i − 1 < d2i , and hence

|d1i | − 1 < d2i < 1 i = 1, . . . , s. (19)

Set

D = {d1i , d2i : |d1i | < 2, |d1i | − 1 < d2i < 1, i = 1, . . . , s} (20)

Identify L(x), x, R
l and l appearing in Section 2 to L(c, d),

[
c

d

]
, R

4s and 4s,

respectively, for the present case.
We now apply the optimization algorithm given in Section 2 to minimizing

L(c, d) under constraint that the parameter x in Fm(x, z) belongs to D. For this we
first concretize Steps 1–4 described in Section 2.

Since L(c, d) is convex in c for fixed d, we take the fixed initial value c(i)0 =
(1, · · · , 1) for any run i, and randomly select initial values only for d according to
a distribution density p(·), which is defined as follows:

p(d) = 5s
i=1p(d1i , d2i ),

where p(u, v) = q(v|u)q(u) with q(u) and q(v|u) being the uniform distributions
over [−2, 2] and [|u| − 1, 1], respectively.

After x(i)0 having been selected in the ith run, the algorithm (4),(5) is calculated
with

ak � a
(i)
k = 0.01

e(i) + k + 1
, e(i) = (100 + i)1.5.
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As to observations, in stead of (6)–(8) we will use information about grandient

because in the present case the gradient h(c, d)(
�= h(x)) of L(c, d) can explicitly

be expressed:

h(x) � h(c, d) � ∇L(c, d) = 1

2π

∫ 2π

0
∇|F(ejw)− Fm(c, d,e

jw)|2dw

= − 1

2π

∫ 2π

0
Re[(F (ejw)− Fm(c, d,e

jw))∇Fm(c, d,ejw)]dw. (21)

In the ith run the observation is denoted by y(i)k+1 and is given by

y
(i)
k+1 = 1

100

100∑
t=1

Re[(F (ej (wk+ 2πt
100 ))− Fm(x

(i)
k ,ej (wk+ 2πt

100 )))

· ∇Fm(x(i)k ,ej (wk+ 2πt
100 ))],

where wk is independently selected from [0, 2π ] by the uniform distribution, and

x
(i)
k stands for the estimate for

[
c

d

]
at time k in the ith run. It is clear that y(i)k+1

is an approximation to the integral (21) with

[
c

d

]
= x

(i)
k . Therefore, we have

observations in the form (9)

y
(i)

k+1 = h(x
(i)
k )+ ε

(i)

k+1.

The expanding truncation method used in (4) and (5) requires projecting the
estimated value to a fixed point, if the estimated value appears outside an extending
region. Let us denote it by Qk. In (4) and (5) the spheres with extending radiuses
Mσk serve as the extending regions Qk, which are now modified as following.

Let us write

x
(i)
k =

[
c
(i)
k

d
(i)
k

]
,

where d(i)k ∈ D. Define

D
(i)
k � {|d1i| ≤ 2(1 − 1

τ
(i)
k

),

(1 − 1

τ
(i)
k

)(|d1i| − 1 + 1

τ
(i)
k

) ≤ d2i ≤ 1 − 1

τ
(i)
k

} ⊂ D, (22)

Q
(i)
k

�= R
2s × D

(i)
k , (23)
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where

τ
(i)
k =

k−1∑
j=0

I{(x(i)j +a(i)j y
(i)
j+1∈(Q(i)

j )c}, τ
(i)

0 = 1. (24)

The expanding truncations in (4) and (5) are also modified:

x
(i)
k+1 = (x

(i)
k + a

(i)
k y

(i))
k+1)I[(x(i)k +a(i)k y

(i)
k+1)∈Q(i)

k ]

+ (x
(i)
k + a

(i)
k y

(i)
k+1)pI[(x(i)k +a(i)k y

(i)
k+1)∈(Q(i)

k )c]

where (x(i)k + a
(i)
k y

(i)
k+1)p means the projection of x(i)k + a

(i)
k y

(i)
k+1 to Q(i)

k .

Take f (i) = (100+ i)2. Then after G(i) = (100+ i)2 − (100+ i)1.5 steps, x(i)G(i)
will be obtained.

Concerning steps 2–4, the only change consists in observations. We replace
y
(i,0)
k+1 in steps 2–4 by Y (i)

k+1 which is defined by

Y
(i)

k+1 = 1

100

100∑
t=1

∣∣∣F(ej (wk+ 2πt
100 ))− Fm(x

(i)
k , ej (wk+ 2πt

100 ))

∣∣∣2
,

where wk are independently selected from [0, 2π ] according to the uniform dis-
tribution for each k. Clearly, Y (i)

k+1 is an approximation to L(x
(i)
k )(= L(c

(i)
k , d

(i)
k )).

Finally, take λ(i) equal to c
ln(i) .

Remark. We have just applied the stochastic approximation method to model
reduction under the constraint that the approximate transfer function Fm(c, d, z) is
stable. It is clear that in lieu of requiring stability, other constraints, for instance,
‖c‖ ≤ K1, ‖d‖ ≤ K2 with K1 > 0 and K2 > 0 being constants, can be treated in a
similar way. The only thing needed to do is to project the estimate to the boundary
of the constrained region when it exits the region.

4. Model reduction methods used for comparison

In control theory there are several well-known model reduction methods such as
model reduction by balanced truncation [13], Hankel norm approximation [13,14]
among others. These methods depend on the balanced realization which is a state
space realization method for a transfer matrix F(s), keeping the Gramians for
controllability and observability of the realized system balanced. To be precise,
the linear system with constant coefficients

ẋ = Ax + Bu, y = Cx +Du

is called a realization for a transfer function F(s), if F(s) = C(sI − A)−1B +D.

If A is stable, then

P �
∫ ∞

0
eAτBB∗eA

∗τ dτ and Q �
∫ ∞

0
eA

∗τC∗CeAτ dτ
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are finite and called the controllability and observability Gramian respectively,
where and hereafter X∗ means taking complex conjugate and transpose for X. It
can be shown that there is a similarity transformation T such that

PQ = T −1%T,

where % = diag(λ1, · · · , λn) is a diagonal matrix with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
Suppose the state x is transformed by T to x̂ � T x. Then in the transformed

coordinate system the controllability Gramian P̂ = T PT ∗ = C equals the ob-
servability Gramian Q̂ = (T −1)∗QT −1 = C, where C = diag(σ1, · · · , σn) and
C2 = %. It is clear that

·
x̂ = TAT −1x̂ + T Bu, y = CT −1x̂ + Du

is also a realization of F(s), which has equal Gramians for controllability and
observability and is referred to a balanced realization. The ordered numbers σ1 ≥
σ2 ≥ · · · ≥ σn ≥ 0 are called the Hankel singular values of the system, and σ1 is
called the Hankel norm of F(s) and is denoted by

‖F(s)‖H = σ1.

For comparison with model reduction by stochastic optimization method described
in Section 3, we will reduce the model by the following methods.

(i) Balanced truncation

Let (A, B, C, D) with A =
[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [C1 C2]

be a balanced realization of F(s) with Gramian C = diag(C1, C2), where
C1 = diag(σ1, · · · σm) and C2 = diag(σm+1, · · · , σn). Then the truncated

system Fm(s)
�= C1(sI − A11)

−1B1 + D is the model reduced by balanced
truncation.

(ii) Hankel norm approximation

Let F(s) be of McMillan degree n and let Fm be the set of transfer functions
of McMillan degree equal to m < n. If

inf
Fm(s)∈Fm

||F(s) − Fm(s)||H = ||F(s) − F̂m(s)||H ,

then F̂m(s) is the model reduced by minimizing the Hankel norm approxima-
tion.

These reductions are realized in the paper by using Matlab. For this, the discrete-
time transfer functions F(z) are transformed to the continuous time ones by using
d2c provided in Matlab. Then the reduced systems are discretized to compute
L(c, d) for comparison.
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5. Simulation results

As F(z) we take a 10th order transfer function F(z) = α(z)/β(z) respectively for
Example 1

α(z) = z9 − 0.4z8 + 0.08z7 − 0.032z6 + 0.0816z5 − 0.0326z4

+ 0.0288z3 − 0.0115z2 + 0.1296z − 0.0518,

β(z) = z10 + 1.08z8 + 0.8726z6 + 0.6227z4 + 0.4694z2 + 0.1266.

Example 2

α(z) = z9 − 2.55z8 + 4.62z7 − 5.705z6 + 6.1495z5 − 5.9771z4

+ 5.0659z3 − 3.629z2 + 1.7084z − 0.5523,

β(z) = z10 − 3.55z9 + 6.155z8 − 5.688z7 + 2.6317z6 − 0.8835z5

+ 2.5479z4 − 4.714z3 + 4.3881z2 − 2.197z + 0.5194.

Example 3

α(z) = z9 + 1.1z8 − 2.68z7 − 2.858z6 + 0.9821z5 + 0.9453z4

− 0.1046z3 − 0.828z2 + 0.00858z + 0.002

β(z) = z10 − 3.6z9 + 7.17z8 − 10.836z7 + 12.5713z6 − 11.2381z5

+ 7.9913z4 − 4.3356z3 + 1.5868z2 − 0.3327z + 0.0296.

Using the algorithm described in Section 3, for Examples 1–3 we obtain the
approximate transfer functions of order 4, respectively denoted by F14(z), F24(z),
and F34(z) with

F14(z) = 0.9986z3 + 0.0274z2 − 0.7212z − 0.0865

z4 + 0.43z3 + 0.4583z2 + 0.1404z + 0.0757
,

F24(z) = 0.9435z3 − 1.5672z2 + 2.0739z − 1.4274

z4 − 2.7169z3 + 3.3849z2 − 2.1344z + 0.5807
,

F34(z) = −2.9591z3 + 8.2974z2 + 3.5048z − 16.6678

z4 − 1.8622z3 + 1.8829z2 − 1.7667z + 0.7772
.
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Using Matlab we also derive the fourth order approximations for Examples 1–3
by balanced truncation and Hankel norm approximation, which are as follows:

F1b(z) = 1.0168z3 + 0.3238z2 − 0.2054z − 0.1490

z4 + 0.6979z3 + 0.9651z2 + 0.3961z + 0.3682
,

F1H (z) = 1.4257z3 + 1.4368z2 − 0.2350z − 0.3201

z4 + 1.1498z3 + 0.76z2 + 0.4191z + 0.1022
,

F2b(z) = 0.728z3 − 0.7624z2 + 0.9906z − 0.361

z4 − 2.6733z3 + 3.5289z2 − 2.3527z + 0.7628
,

F2H (z) = 2.5851z3 − 4.4881z2 + 4.8781z − 1.6623

z4 − 2.4062z3 + 2.9866z2 − 1.8512z + 0.5752
,

F3b(z) = −6.6681z3 + 9.5183z2 + 2.8167z − 10.7083

z4 − 1.925z3 + 1.9375z2 − 1.8604z + 0.8718
,

F3H (z) = 110.9644z3 − 131.9689z2 + 139.8014z − 135.0758

z4 − 1.2098z3 + 1.2268z2 − 1.1031z + 0.2512
,

where the subscripts b and H denote the results obtained by balanced truncation
and Hankel norm approximation respectively.

The approximation errors L(c, d) are given in the following table, where by
BT, HNA, and SO we mean balanced truncation, Hankel norm approximation, and
stochastic optimization, respectively.

BT HNA SO

Example 1 0.1694 0.3136 0.0641

Example 2 6.8254 7.3206 2.9976

Example 3 1349.9 14820 761.8623

From this table we see that the algorithm presented in Section 3 gives less
approximation errors in H2-norm in comparison with other methods.

We now compare approximation errors inH∞-norm and compare step responses
between the approximate models and the true one by Figure 1.

In the figures of step response

• the solid lines (——) denote the true high order systems;

• the dashed lines (- - -)denote the system reduced by Hankel norm approxima-
tion;

• the dotted lines (· · · · · · ) denote the system reduced by balanced truncation;

• The dotted-dashed lines (− · −) denote the systems reduced by the stochastic
optimization method given in Section 3.

In the figures of the approximation error |F(ejw)−Fm(c, d, e
jw)|2, w ∈ [0, 2π ]
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• the solid lines (——) denote the systems reduced by the stochastic optimiza-
tion method;

• the dashed lines (- - -) denote the system reduced by Hankel norm approxim-
ation;

• the dotted lines (· · · · · · ) denote the system reduced by balanced truncation.

This figure shows that the algorithm given in Section 3 gives less approxima-
tion error in H∞-norm in comparison with other methods for Example 1 and the
intermediate error in H∞-norm for Examples 2 and 3. Concerning step responses,
the algorithm given in Section 3 provides better approximation in comparison with
other methods for all three examples.

6. Conclusion

The problem of order reduction for linear systems in essence is a nonconvex op-
timization problem. Because of nonconvexity of the minimized function, being the
approximation error as a function of coefficients of the reduced model, a convex
optimization algorithm may lead to an unsatisfactory model that greatly differs
from the real system. The widely accepted model reduction methods in control
theory such as balanced truncation and Hankel norm approximation provide satis-
factory results in many cases, but the approximation accuracy is not optimized. In
this paper the global stochastic optimization algorithm proposed by the authors is
applied to reducing the system orders.

The simulation shows that the stochastic optimization method works very well:
it provides the step response as well as the transfer function of the reduced system
closer to those of the true system, in comparison with other methods. Therefore,
the proposed stochastic optimization algorithm is promising to be successfully
used in model reduction. As a matter of fact, it may be applied to other problems
in control where parameter optimization is concerned, for example, the problem
of optimizing weights in neural networks. Of course, for different problems, the
specific feature of the optimized function in question should be taken into account.
This would lighten the computational burden and improve accuracy. For example,

in Section 3 L(c, d) is nonconvex in

[
c

d

]
, but it is convex in c for fixed d. So the

search for initial value is carried out only for d, and this greatly saves the com-
putational time. For the nonconvex stochastic optimization algorithm itself, new
combinations of global search with local optimization other than the one presented
in the paper may be considered for further research.
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